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Abstract
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Social Choice Correspondences (SCCs). The outcome, as a set of alternatives, can be interpreted

in many ways depending on the particular problem, such as collections of mutually compatible

decisions as considered in Barberà et al. (1991) and Miyagawa (1997). In this paper, we aim to

present the class of SCCs for two important sets of preferences of the agents (hereafter, called

domains).

Our domain restrictions are motivated by those of Barberà et al. (2001). They consider prefer-

ences over subsets of alternatives that are extensions of a valuation function over individual

alternatives. They study two types of extensions: first, conditionally expected utility consistent

orderings (CEUC), and second, conditionally expected utility consistent with equal probabilities order-

ings (CEUCEP). In CEUC ordering, each agent has a utility function and a subjective probability

distribution λ over the set of alternatives. The agent’s valuation for any subset is the conditional

expected utility of that set. Such a valuation over subsets can be interpreted in the following

way: the outcome is a set of alternatives that are selected after a first round of screening, and

the final alternative will be one from this set, chosen at a later stage.1 The agents may not know

the selection process in the second stage. As a result, they may have their subjective belief

regarding this selection, which is captured by the probability distribution. Alternatively, another

interpretation is that the outcome of the function becomes a decision-making committee, and

λ is a voter’s assessment of how much influence a given candidate has in making decisions.

Hence a voter’s implicit utility of a set of candidates S is the influence-weighted average over

that set. In CEUCEP ordering, the only difference is that the underlying probability distribution

λ is uniform over the set of alternatives (for another interpretation of CEUCEP ordering, see

Barberà et al. (2001)). In both cases, they assume that the utility functions are unrestricted, i.e., a

utility function maps to an element of Rm, where m is the number of alternatives. Moreover, the

utility function does not have a tie.

One of the most important classes of domains in social choice literature is the single-peaked

domain. Single-peakedness requires an exogenous ordering over the set of alternatives. They

appear naturally in a variety of situations, such as preference aggregation (Black (1948)), strategic

voting (Moulin (1980)), public facility allocation (Bochet and Gordon (2012)), fair division

(Sprumont (1991); Barberà et al. (1997)) and object assignment (Bade (2019)). Other than its

wide applicability, single-peakedness is also important to circumvent the negative result of

the seminal Gibbard-Satterthwaite Theorem (Gibbard (1973)-Satterthwaite (1975)). A utility

function satisfies single-peakedness w.r.t. an ordering over the alternatives if there is some

1This interpretation is taken from Barberà et al. (2001).
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alternative having the maximum utility, and as one moves away from it, the utility decreases.

In this paper, we assume that the agents have preferences over the subsets of alternatives

that arise from a single-peaked utility function and a subjective probability distribution over the

alternative set. As considered in the paper Barberà et al. (2001), we also work with two classes

of domains, one where the probability distribution can be arbitrary (CESUC domain (SU)),

whereas the other allows for only uniform probability distribution (CESUCEP domain (SE)).

Given that the domain restriction considered in Barberà et al. (2001) is regarded as a meaningful

way to derive preferences over the subset of alternatives by combining a utility function and a

subjective belief over the alternative set, and the importance of single-peakedness, we believe

that our domain restrictions are relevant.

Moulin (1980) shows that a social choice function (SCF) is tops-only, unanimous, and strategy-

proof if and only if it is a min-max rule. A min-max rule is characterized by a set of parameters,

one for each subset of the agents. At every preference profile, the outcome of the rule is

determined by the peaks of the agents’ preferences and the corresponding parameters. In

the current work, we show that on the CESUC domain, an SCC is tops-only, unanimous, and

strategy-proof if and only if it is a union of two min-max rules. We call such correspondences

union min-max (UM) rules. This result implies that for such a correspondence, the outcome

can be at most a doubleton set. For the CESUCEP domain, we show that the class of SCCs is

more restrictive, a subclass of all union min-max rules. The SCCs on the CESUCEP domain

are unions of two adjacent min-max rules where two min-max rules are adjacent if those have

either the same or adjacent parameters for each subset. We name these correspondences as

union adjacent min-max (UAM) rules.

One paper closely related to ours is Rodrı́guez-Álvarez (2017), which considers the single-

peaked domain over the set of singleton and adjacent doubleton sets and shows that an SCF

on this domain is unanimous and strategy-proof if and only if it is an extended median voter

scheme (EMVS). Our domain restriction is more general than this as, in our case, the preferences

are over all possible subsets of the alternatives. It is worth noting that if we restrict the

CESUC domain over the singleton and adjacent doubleton sets, we get the domain restriction

considered in Rodrı́guez-Álvarez (2017). Therefore, after showing that on the CESUC domain,

any unanimous, strategy-proof, and tops-only SCC selects either a singleton or an adjacent

doubleton set (Lemma 3), the characterization of corresponding SCCs follows from Rodrı́guez-

Álvarez (2017). However, we prove this part independently of their result. Also, although any

EMVS is a UAM rule and vice versa, the two definitions are structurally different. In Section 4.1,

3



we comment on this in detail.

As discussed before, Barberà et al. (2001) consider two domain restrictions, the CEUC domain

(henceforth DE) and the CEUCEP domain (henceforth DU). They characterize the unanimous

and strategy-proof SCCs on these domains by showing that, on DE, an SCC is unanimous and

strategy-proof if and only if it is a bi-dictatorial rule, whereas, on DU , an SCC is unanimous and

strategy-proof if and only if it is a dictatorial rule. Our results are of similar flavour to theirs

as we consider the corresponding two domains, SE and SU , and characterize the tops-only,

unanimous, and strategy-proof SCCs on those domains. Indeed, our results agree with theirs:

dictatorial and bi-dictatorial rules are UM rules, and dictatorial rules are UAM rules.

The rest of the paper is organized as follows. Section 2 introduces the model and basic

definitions. Section 3 presents our main result characterizing tops-only, unanimous, and

strategy-proof SCCs on SE and SU . Section 4 contains discussions of how our results are

related to Rodrı́guez-Álvarez (2017) and provides an alternative characterization of tops-only,

unanimous, and strategy-proof SCCs on SU . Section 5 gathers all omitted proofs.

2. OUR FRAMEWORK

Let N = {1, 2, . . . , n} be a set of at least two voters. Let A = {c1, c2, . . . , cm} where m ≥ 3 be a

finite set of candidates with an intrinsic strict ordering ≺ given by c1 ≺ c2 ≺ · · · ≺ cm. This can

be interpreted as the stance of the candidates on some scale (eg. political leaning of candidates,

ordered left to right). For ci, cj ∈ A, let [ci, cj] denote the set of candidates between ci and cj, i.e.,

[ci, cj] = {ci, ci+1, . . . , cj} if ci ≺ cj or [ci, cj] = {cj, cj+1, . . . , ci} if cj ≺ ci. Also, for convenience,

we sometimes denote the candidate ck±j as ck ± j, for any j. Whenever we write minimum or

maximum of a subset of A, we mean it with respect to the ordering ≺. By a ⪯ b, we mean a = b

or a ≺ b. Let A (henceforth, the alternative set) denote the nonempty subsets of A. We will use

Ar, r = 1, . . . , |A| to denote the set of subsets of A which have cardinality r. Throughout this

paper, whenever it is clear from the context, we do not use braces for singleton sets.

2.1 DOMAIN OF PREFERENCES

A preference R is a complete, reflexive, and transitive binary relation over the set A.2 For a

preference P and for distinct X, Y ∈ A, XRY is interpreted as “X is preferred to Y according to

R”. Further, the strict part of R is denoted by P and the indifference part of R is denoted by I.

2In general, whenever we write a preference over a subset B of A, we mean a complete, reflexive, and transitive
binary relation over the set B.
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Let R be the set of all preferences over A. An element of Rn is called a preference profile and is

denoted by RN = (R1, . . . , Rn). For an agent i ∈ N, we use (R′
i, R−i) to denote the preference

profile (R1, . . . , Ri−1, R′
i, Ri+1, . . . , Rn).

We denote by D ⊆ R a domain of admissible preferences. We will be interested in two types

of domains in this paper which we describe below. We start with some definitions.

A utility function for individual i is a map vi : A → R. Throughout the paper, we assume

that for any voter i, and any distinct x, y ∈ A, vi(x) ̸= vi(y). A utility function vi is single-

peaked if there is a candidate x ∈ A such that for all y, z ∈ A, z ≺ y ≺ x =⇒ vi(z) < vi(y) <

vi(x) and x ≺ y ≺ z =⇒ vi(x) > vi(y) > vi(z). We call x the ‘peak’ of vi. An assessment λ is

a function λ : A → (0, 1] such that ∑
ci∈A

λ(ci) = 1.

We are now ready to describe the domains of interest in this paper. To ease the presentation,

we introduce the following notation. For a utility function vi and an assessment λi, we write

vλi
i (X) = ∑

xj∈X
vi(xj)

 λi(xj)

∑
xk∈X

λi(xk)

 for all X ∈ A.

If λi is uniform, that is, λi(x) = 1
m for all x ∈ A, we will write vλi

i as vE
i .

Definition 1. A preference Ri over A is said to be conditionally expected single-peaked utility

consistent (CESUC) if there exists a single-peaked utility function vi and an assessment λi such

that:

XRiY ⇐⇒ vλi
i (X) ≥ vλi

i (Y) for all X, Y ∈ A.

Let SU be the domain of all CESUC preferences.

Definition 2. A preference Ri over A is said to be conditionally expected single-peaked utility

consistent with equal probabilities (CESUCEP) if there exists a single-peaked utility function

vi such that:

XRiY ⇐⇒ vE
i (X) ≥ vE

i (Y) for all X, Y ∈ A.

Let SE be the domain of all CESUCEP preferences.

REMARK 1. Clearly, SE ⊂ SU ⊂ R. □

We provide an example to illustrate the distinction between these two domains.

Example 1. Let A = {a, b, c} with a ≺ b ≺ c. Consider the following preferences over A:

1. The preference ordering R1, with {a}P1{b}P1{a, b}P1{a, b, c}P1{a, c}P1{b, c}P1{c}. This

preference R1 belongs to SU since it can be generated by the following single-peaked
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utility function: v(a) = 10, v(b) = 9, v(c) = 1 and a uniform assessment λ1, i.e., λ1(a) =

λ1(b) = λ1(c) = 1
3 . Since the preference can be generated by a uniform assessment, R1

also belongs to SE.

2. The preference ordering R2, with {a}P2{b}P2{a, c}P2{a, b}P2{a, b, c}P2{b, c}P2{c}. This

preference R1 belongs to SU since it can be generated by the following single-peaked

utility function: v(a) = 10, v(b) = 2, v(c) = 1 and the assessment λ2 with λ2(a) = 0.1,

λ2(b) = 0.8, λ2(c) = 0.1. However, this preference cannot be generated by a uniform

assessment, so R2 is not a member of SE. Indeed, note that any preference Rj in SE with

τ(Rj) = a must have {a, b}Pj{a, c}.

These two examples illustrate how SU , by admitting arbitrary assessments, allows for a

much richer domain of preferences than the more restrictive SE. Lemma 5, wherein we prove

the membership of several families of preferences in SE and SU , provides a deeper picture of

the structure of these two domains.

Henceforth S denotes either SU or SE, and we will only look at voter preferences with these

domains. Note that Ri ∈ S implies that while Ri may exhibit indifference between some sets,

the best and the worst alternatives according to Ri are singleton sets. The top-ranked alternative

a of Ri is the peak of the underlying utility function vi, whereas the worst alternative b of Ri is

the alternative with the minimum utility in vi. We denote this alternative a as τ(Ri).

For R ∈ R and B ⊆ A, the restriction of R to B, R|B is defined as follows: for all X, Y ∈ B,

XR|BY if and only if XRY. Similarly, we can define P|B and I|B . For B ⊆ A, we define the

restriction of S and R to B as S|B = {R|B | R ∈ S} and R|B = {R|B | R ∈ R} respectively.

Further, the restriction of a profile RN ∈ Rn to B is RN |B = (R1|B , . . . , Rn|B).

REMARK 2. Note that for R ∈ R, R|A1 is a preference over the candidates in A. Further, for

R ∈ S , R|A1 has the following property: for any a, b ∈ A, either a ≺ b ≺ τ(R) or τ(R) ≺ b ≺ a

implies bP|A1 a. Such a preference R is called a single-peaked preference over A, and S|A1 is the set

of all single-peaked preferences over A. □

Later, when we discuss the connection between our paper and Rodrı́guez-Álvarez (2017),

we require the following remark.

REMARK 3. Let I = {S ⊆ A : S is an interval and |S| ≤ 2}, i.e., I is the set of all subsets of A

that are either singletons or adjacent pairs. We can naturally extend the ordering ≺ over A to an

ordering ◁ on I in the following way: {c1} ◁ {c1, c2} ◁ {c2} ◁ {c2, c3} ◁ {c3} ◁ · · · ◁ {cm−1,

cm} ◁ {cm}. We write x ⊴ y to denote x ◁ y or x = y. A preference R on I is single-peaked
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with respect to the ordering ◁ if there exists x ∈ I with |x| = 1 such that for all y, z ∈ I ,

both x ◁ y ◁ z and z ◁ y ◁ x imply xPyPz. Let us denote SI , the set of all single-peaked

preferences on I with respect to ◁. It is worth mentioning that for any preference R ∈ S , R|I
is a single-peaked preference w.r.t. the ordering ◁. Moreover, S|I = SI , i.e., if we restrict the

preferences in S to I , we get the set of all single-peaked preferences over I . To see this fact,

first, consider R ∈ SI and consider any single-peaked utility function v over A representing

the same preferences over A as R, and the uniform assessment λ. Further, as for all a, b ∈ A,

v(a) < v(b) implies vE(a) < vE({a, b}) < vE(b), we have the generated preference R′ (using

v and the uniform assessment) over S matches R over I , so we conclude SI ⊆ SE|I . To see

the other inclusion, note that for any R′ ∈ S|I , the underlying utility function v under any

assessment λ obeys that for a, b ∈ A, v(a) < v(b) =⇒ vλ({a, b}) ∈ (v(a), v(b)). In particular,

this is true when a, b are adjacent. Along with the single-peakedness property of v, we have

that R′ is single-peaked over I , hence S|I ⊆ SI . □

2.2 SOCIAL CHOICE CORRESPONDENCES AND THEIR PROPERTIES

In this section, we define social choice correspondences and discuss different properties of a

social choice correspondence. Throughout the rest of the paper, we use D ⊆ R|B to denote a

domain with τ(R) ∈ A1 for all R ∈ D, where B ⊆ A.3

Definition 3. A social choice correspondence (SCC) f is a map f : Dn → A.

An SCC f : Dn → A is a social choice function (SCF) if | f (RN)| = 1 for all RN ∈ Dn. With a

slight abuse of notation, we write f : Dn → A to denote an SCF.

Definition 4. An SCC f : Dn → A is tops-only if for all RN , R′
N ∈ Dn

[τ(Ri) = τ(R′
i) for all i ∈ N] =⇒ [ f (RN) = f (R′

N)].

The output of a tops-only SCC is only dependent on the most preferred candidate of each

voter, rather than on their entire preference ordering. Hence, we can abuse notation to recast a

tops-only SCC f : Dn → A as a function with domain An instead, i.e., we can write f : An → A.

Such correspondences represent voting systems in which a voter can only indicate their most

preferred candidate, and the outcome is chosen to be a subset of the candidates.

Definition 5. An SCC f : Dn → A is manipulable if there exist RN ∈ Dn, i ∈ N, and R′
i ∈ D

3Note that the domains S , SI , and S|A1 satisfy this property and we will be using the definitions for these
domains only.
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such that f (R′
i, R−i)Pi f (RN). In such a situation, we say that agent i manipulates f at RN via R′

i.

If an SCC f is not manipulable, it is strategy-proof.

Definition 6. An SCC f : Dn → A is unanimous if for all RN ∈ Dn,

[τ(R1) = · · · = τ(Rn)] =⇒ [ f (RN) = τ(R1)].

Recall that for any preference R in S , τ(R) = a for some a ∈ A. Thus, for any unanimous

SCC on S , a singleton set will be the outcome in any unanimous profile.

2.2.1 A CLASS OF SOCIAL CHOICE CORRESPONDENCES

In this paper, we introduce two new classes of SCCs. These SCCs are defined using min-max

rules introduced by Moulin (1980). We first recall the definition of a min-max rule.

Definition 7. An SCF f : Dn → A is a min-max rule if there exists {β
f
S}S⊆N with β

f
S ∈ A for

every S ⊆ N satisfying the following two conditions

(i) β
f
∅ = cm, β

f
N = c1, and

(ii) β
f
T ⪯ β

f
S for S ⊆ T,

such that for all RN ∈ Dn

f (RN) = min
S⊆N

[max
i∈S

{τ(Ri), β
f
S}].

Note that a min-max rule is tops-only by definition. Therefore, we sometimes use a slight

abuse of notation to write a min-max rule as a function from An to A. We now define the two

new classes of SCCs.

Definition 8. An SCC f : Dn → A is a union min-max (UM) rule if there exist two min-max

rules g, h : Dn → A such that for all RN ∈ Dn

f (RN) = g(RN) ∪ h(RN).

Two min-max rules g, h : Dn → A are called adjacent min-max rules if
∣∣[β

g
S, βh

S
]∣∣ ≤ 2 for all

S ⊆ N.

Definition 9. An SCC f : Dn → A is a union adjacent min-max (UAM) rule if there exist two

adjacent min-max rules g, h : Dn → A such that for all RN ∈ Dn

f (RN) = g(RN) ∪ h(RN).
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A couple of facts follow immediately from the above definitions. The first is that any UAM

rule is also a UM rule. The second is that any UM rule chooses an element of A1 ∪A2 at any

preference profile. In what follows, we provide two examples, one for a UM rule and another

for a UAM rule.

Example 2. Let A = {a, b, c} with a ≺ b ≺ c and N = {1, 2}. Consider the following SCC

f : S2 → A.

f (R1, R2) = min{τ(R1), τ(R2)} ∪ max{τ(R1), τ(R2)}.

We claim that f is a UM rule. To see this, first note that g : S2 → A defined as

g(R1, R2) = min{τ(R1), τ(R2)}.

is a min-max rule. This can be verified with the choices of β
g
1 = β

g
2 = a. Similarly, we can show

that h : S2 → A defined as

h(R1, R2) = max{τ(R1), τ(R2)}.

is a min-max rule with βh
1 = βh

2 = c. Hence, f (R1, R2) = g(R1, R2) ∪ h(R1, R2) is a UM rule.

However, as g and h are not adjacent min-max rules, f is not a UAM rule. □

Example 3. Let A = {a, b, c} with a ≺ b ≺ c and N = {1, 2}. Consider the following SCC

f : S2 → A.

f (R1, R2) =


max{τ(R1), τ(R2)} if max{τ(R1), τ(R2)} ≺ c,

{b, c} if max{τ(R1), τ(R2)} = c and min{τ(R1), τ(R2)} ≺ c,

c otherwise.

We assert that the SCC f is a UAM rule. Consider the following two SCFs g and h

g(R1, R2) =


max{τ(R1), τ(R2)} if max{τ(R1), τ(R2)} ≺ c,

b if max{τ(R1), τ(R2)} = c and min{τ(R1), τ(R2)} ≺ c,

c otherwise,

h(R1, R2) = max{τ(R1), τ(R2)}

It is clear that f (R1, R2) = g(R1, R2) ∪ h(R1, R2) for all (R1, R2) ∈ S2. Also, it can be checked
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that g and h are min-max rules given by the parameters β
g
1 = β

g
2 = b and βh

1 = βh
2 = c. Thus, g

and h are adjacent min-max rules and hence, f is a UAM rule.

One crucial observation about f is that the outcome of f at every profile is an interval. Later,

we show that, in general, this is true for any UAM rule (see Claim 1). □

3. CHARACTERIZATION RESULTS

We first state a known result in the context of SCFs (Moulin (1980), Weymark (2011)). Recall

that S|A1 is the set of all single-peaked preferences over A.

Theorem (Moulin (1980), Weymark (2011)). An SCF f : (S|A1)
n → A is tops-only, unanimous,

and strategy-proof if and only if it is a min-max rule.

It is straightforward to see that if we consider tops-only, unanimous, and strategy-proof

SCFs on S , the same result holds. Therefore, we have the following fact. For completeness, we

provide proof of this in the Appendix 5.1.

Fact 1. An SCF f : Sn → A is tops-only, unanimous, and strategy-proof if and only if it is a min-max

rule.

We now present the two main results in this paper. Theorem 1 and Theorem 2 characterize the

set of tops-only, unanimous, and strategy-proof SCCs on the domains SE and SU , respectively.

Theorem 1. Let f : Sn
E → A. Then f is tops-only, unanimous, and strategy-proof if and only if it is a

UM rule.

Theorem 2. Let f : Sn
U → A. Then f is tops-only, unanimous, and strategy-proof if and only if it is a

UAM rule.

3.1 PROOF OF THEOREM 1

Proof of the “if” part: We show that any UM rule is tops-only, unanimous, and strategy-proof

on SE. Let g, h be two min-max rules and f the UM rule such that f (RN) = g(RN) ∪ h(RN)

for all RN ∈ Sn
E . Since min-max rules are tops-only and unanimous, f is also tops-only and

unanimous. We show that f is strategy-proof. As f , g, and h tops-only, we may write these as

functions with domain An, that is, f : An → A and g, h : An → A. Assume for contradiction

that f is not strategy-proof. WLOG assume that voter 1 can manipulate at a profile RN via a

preference R′
1. Let’s denote aj = τ(Rj) for all j ∈ N and a′1 = τ(R′

1). Since R1 ∈ SE, there exists
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a utility function v1, generating R1. Thus, we have vE
1 ( f (a1, . . . , an)) < vE

1 ( f (a′1, . . . , an)) which

further implies

vE
1 ({g(a1, . . . , an)} ∪ {h(a1, . . . , an)}) < vE

1 ({g(a′1, . . . , an)} ∪ {h(a′1, . . . , an)})

=⇒ v1(g(a1, . . . , an)) + v1(h(a1, . . . , an))

2
<

v1(g(a′1, . . . , an)) + v1(h(a′1, . . . , an))

2
.

This above inequality requires either v1(g(a′1, . . . , an)) > v1(g(a1, . . . , an)) or v1(h(a′1, . . . ,

an)) > v1(h(a1, . . . , an)). This is a contradiction since both g and h are min-max rules, and hence

by Fact 1, these are strategy-proof on S . ■

Proof of the “only-if” part: Let f : Sn
E → A be a tops-only, unanimous, and strategy-proof

SCC. We will show that f is a UM rule, that is, there exist min-max rules g and h such that

f (RN) = g(RN) ∪ h(RN) for all RN ∈ Sn
E . We first prove three propositions unfolding different

properties of f . The first proposition shows that f satisfies uncompromisingness. For an SCF,

uncompromisingness was first introduced in Border and Jordan (1983). We slightly modify the

definition to fit it in the context of an SCC. Roughly speaking, an SCC is uncompromising if,

for any candidate x, a voter changing their peak while remaining strictly on the same side of

x as before does not change the membership of x in the outcome. Below, we formally define

uncompromisingness of an SCC.

Definition 10. An SCC f : Sn
E → A is uncompromising if for all RN ∈ Sn

E , all R′
i ∈ SE, and all

x ∈ A \ [τ(Ri), τ(R′
i)], we have

x ∈ f (RN) ⇐⇒ x ∈ f (R′
i, R−i).

We now state the first proposition.

Proposition 1. f is uncompromising.

Proof. We divide the proof into two lemmas, first one showing that f satisfies the interval

property, that is, for any profile RN ∈ Sn
E , the outcome of f is a subset of the interval

[min{τ(R1), . . . , τ(Rn)}, max{τ(R1), . . . , τ(Rn)}]
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Lemma 1. For all RN ∈ Sn
E ,

f (RN) ⊆ [min{τ(R1), . . . , τ(Rn)}, max{τ(R1), . . . , τ(Rn)}] .

Proof. Since f is tops-only, we can recast it as a function f : An → A. Suppose there exists

x ∈ f (x1, . . . , xn), x /∈ [min{x1, . . . , xn}, max{x1, . . . , xn}]. WLOG say x ≺ min{x1, . . . , xn}.

Then consider the following sets:

A1 = f (x1, x2, x3, x4, . . . , xn)

A2 = f (x1, x1, x3, x4, . . . , xn)

A3 = f (x1, x1, x1, x4, . . . , xn)

...

An = f (x1, x1, x1, x1, . . . , x1)

Note that x ∈ A1, but An = {x1} (by unanimity). Consider the smallest i such that [c1,

x] ∩ Ai = ∅. Let voter i have a preference ordering Ri that peaks at xi such that YPiX whenever

[c1, x] ∩ Y = ∅, [c1, x] ∩ X ̸= ∅ (see (i) of Lemma 5 in Appendix 5.2). Then, i can manipulate at

f (x1, . . . , x1, xi, xi+1, . . . , xn) to f (x1, . . . , x1, x1, xi+1, . . . , xn) for a better outcome, since the first

contains an element of [c1, x] while the second does not. Since f is strategy-proof, this is a

contradiction. ■

The second lemma exhibits another crucial property of f . It shows that the cardinality of f is

always at most two.

Lemma 2. For all RN ∈ Sn
E , | f (RN)| ≤ 2.

We relegate the proof of this lemma in Appendix 5.3. Given Lemma 1 and 2, we are ready to

prove Proposition 1.

Since f is tops-only, we recast it as a function f : An → A. Assume otherwise, that the

proposition does not hold for some voter i and for some profile (a1, . . . , ai, . . . , an), i.e., there

exists some x /∈ {ai, ai + 1} whose membership in the outcome set is affected by voter i switching

their peak from ai to ai + 1. We may assume that x ≻ ai + 1; if x ≺ ai, we can simply look at

the reverse ordering over candidates. Further, take x to be the be the largest candidate whose

membership is affected by this switch. Define A := f (a1, . . . , ai, . . . , an), B := f (a1, . . . , ai + 1,

. . . , an).

12



Case 1: x = max(A ∪ B)

Let voter i have a preference Ri such that XPiY whenever X ∩ [x, cm] = ∅ and Y ∩ [x, cm] ̸= ∅

(there exist such preferences that peak at each of ai and ai + 1; (see (iii) of Lemma 5 in Appendix

5.2). Then i can choose between voting between voting for ai and ai + 1 depending on whichever

outcome set excludes x for a better outcome, regardless of their own whether their preference

peaks at ai or ai + 1. Hence strategy-proofness is broken.

Case 2: x ̸= max(A ∪ B). So there exists y ≻ x with y ∈ A ∩ B.

(i) If either A = {y} or B = {y}: Let i have a preference R′
i such that XP′

i Y whenever

X ⊈ [x + 1, cm], Y ⊆ [x + 1, cm] (there exist such preferences that peak at each of ai and

ai + 1; (see (iv) of Lemma 5 in Appendix 5.2). Then i can choose to vote for whichever

of ai, ai + 1 would cause the outcome set to include x regardless of their own preference.

Since |A| ≤ 2, |B| ≤ 2 (from Lemma 2), this set must be exactly {x, y}, which is preferred

over {y}. They do this regardless of whether their preference peaks at ai or ai + 1. Hence,

strategy-proofness is broken.

(ii) If A ̸= {y} and B ̸= {y}: Then one of A, B is of the form {x, y} and the other is of the form

{w, y} for some w ≺ x ≺ y. Then let i have the preference R′′
i such that XP′′

i Y whenever

X ⊈ [x, cm], Y ⊆ [x, cm] (there exist such utilities that peak at each of ai and ai + 1; (see

(iv) of Lemma 5 in Appendix 5.2). Then i can choose the set that excludes x for a better

outcome regardless of whether their peak is at ai or ai + 1. Hence, the function is not

strategy-proof.

In all cases, we get that f is not strategy-proof, yielding contradictions. Hence, f must be

uncompromising. ■

From uncompromisingness, we know when an agent unilaterally moves her peak from one

candidate to the next one, the membership of any candidate other than the two peaks remains

unchanged. However, uncompromisingness does not say anything about the membership of

the two adjacent peaks. The following proposition directs us to how they behave in such a

scenario.

Proposition 2. Let A := f (RN) and B := f (R′
i, R−i) where τ(Ri) and τ(R′

i) are adjacent and

τ(Ri) ≺ τ(Ri+1) for some RN ∈ Sn
E , i ∈ N, and R′

i ∈ SE. Define S := A ∩ {τ(Ri), τ(R′
i)} and

T := B ∩ {τ(Ri), τ(R′
i)}. Then:

• if S = ∅ then T = ∅,
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• if S = {τ(Ri)} then T = {τ(Ri)} or {τ(Ri), τ(R′
i)} or {τ(R′

i)},

• if S = {τ(Ri), τ(R′
i)} then T = {τ(Ri), τ(R′

i)} or {τ(R′
i)}, and

• if S = {τ(R′
i)} then T = {τ(R′

i)}.

Proof. Consider a preference profile RN ∈ Sn
E , i ∈ N, and R′

i ∈ SE. To facilitated the writing,

let’s denote τ(Ri) by ai and τ(R′
i) by ai + 1. Note that the rest of the outcomes besides ai and

ai + 1 are unchanged between A and B due to uncompromisingness.

If S = ∅ and T ̸= ∅ then f is manipulated by i when i has a preference Ri such that

∀a ∈ A \ {ai, ai + 1}, {ai}Pi{ai + 1}Pi{a}. Then i votes ai + 1 for a better outcome even though

they prefer ai.

If S = {ai} and T = ∅ then f is manipulated by i when i has a preference Ri such that

∀a ∈ A \ {ai, ai + 1}, {ai + 1}Pi{ai}Pi{a}, since i can vote ai instead of ai + 1 for a better

outcome.

If S = {ai, ai + 1} and T = {ai}, then f is manipulated by i when i has a preference R′
i that

peaks at ai, since i can vote ai + 1 for a better outcome.

If S = {ai + 1} and ai ∈ T, then f is manipulated by i when i has a preference R′′
i that peaks at

ai. If S = {ai + 1} and T = ∅, then f is manipulated by i when i has a preference R′′′
i that peaks

at ai + 1, since i can vote ai instead of ai + 1 for a better outcome. ■

REMARK 4. An analogous result holds for the leftward movement of voter i’s peak.

The following proposition shows that if two SCCs agree on all the profiles where agents have

either c1 or cm as the peak, then those two SCCs will yield the same outcome everywhere on Sn
E .

A similar result is shown by Peters et al. (2014) in the context of probabilistic rules.

Proposition 3. Let f1, f2 : Sn
E → A be tops-only, unanimous, and strategy-proof SCCs. If f1(RN) =

f2(RN) when τ(Ri) ∈ {c1, cm} for all i ∈ N, then f1(RN) = f2(RN) for all RN ∈ Sn
E .

Proof. As usual, since f1, f2 are tops-only, we recast them to be functions f1, f2 : An → A. We

prove the proposition by contradiction. Suppose we have that f1(a1, . . . , an) = f2(a1, . . . , an)

when ai ∈ {c1, cm} for all i ∈ N, but that for some particular (x1, . . . , xn) ∈ An there is a

candidate cj that belongs to only one of f (x1, . . . , xn) and g(x1, . . . , xn). Let S = {i : xi ≺ cj},

T = {i : xi ≻ cj}. Define

B(xi) =


c1 i ∈ S

cm i ∈ T

x otherwise
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From Proposition 2, we note that cj ∈ f1(x1, . . . , xn) ⇐⇒ cj ∈ f1(B(x1), . . . , B(xn)).

Case 1: Suppose cj ̸= xi for any i. Then,

cj ∈ f1(x1, . . . , xn) ⇐⇒ cj ∈ f1(B(x1), . . . , B(xn))

⇐⇒ cj ∈ f2(B(x1), . . . , B(xn))

⇐⇒ cj ∈ f2(x1, . . . , xn)

We have a contradiction.

Case 2: Alternatively, suppose cj = xi1 = . . . = xin for some i1, . . . , in. Let f1, f1 be the maximum

and minimum of f1(x1, . . . , xn), and f2, f2 be the maximum and minimum of f2(x1, . . . , xn).

If f1 = f2 and f1 = f2, then it must be the case that f1(x1, . . . , xn) = f2(x1, . . . , xn) (since by

Lemma 2 each of these sets have at most two elements). This is a contradiction, hence one of

f1 = f2 and f1 = f2 is not true. WLOG say f1 ̸= f2, and further WLOG say f1 ≻ f2, and that

cj = f1. We note that xi1 = . . . = xin = cj = f1. Define

B′(xi) =


c1 i ∈ S

cm i ∈ T

cm otherwise

But now, we have

[cj, cm] ∩ f1(B′(x1), . . . , B′(xn)) ̸= ∅

[cj, cm] ∩ f2(B′(x1), . . . , B′(xn)) = ∅

Repeated application of Proposition 2 gives us the first fact, and Lemma 1 gives us the second.

We get the contradiction that our functions do not agree even on boundary inputs. Hence, there

is no such candidate cj. ■

We are now ready to complete the proof of Theorem 1. From Lemma 2, we know that

| f (RN)| ≤ 2. Define g(RN) := min f (RN) and h(RN) := max f (RN). We simply need to show

that g and h are min-max rules. We shall prove this for h, the proof for g is analogous. In

particular, we shall prove that h as defined here is tops-only, unanimous, and strategy-proof

SCF on SE, and the proof would follow by Fact 1.

Since f is tops-only, it must be that h is tops-only. Hence we recast f , h to have domain An. It
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is clear that h is unanimous from the unanimity of f . Suppose h is not strategy-proof; suppose it

is manipulable by (WLOG) voter 1. Let (a1, . . . , an) ∈ An be a profile and a′1 ̸= a1 be a candidate

such that when voter 1 has a single-peaked utility v1 that peaks at a1, they can manipulate at

(a1, . . . , an) to get a more preferred outcome h(a′1, . . . , an).

Suppose a1 ≺ a′1. Then, we must have that h(a1, . . . , an) ∈ [a1, a′1], otherwise due to the

uncompromisingness of f and therefore h (Lemma 1), the outcome would simply not move.

However, if h(a1, . . . , an) ∈ [a1, a′1], Proposition 2 prescribes how the outcome set can move in

response to voter 1 moving rightwards: elements of the outcome of f can only move rightwards,

and hence the outcome of h can only move rightwards. Hence we get that h(a′1, . . . , an) ≻ h(a1,

. . . , an). This is a contradiction, since the new outcome is further from the peak and is in fact

less preferred, not more. Similar reasoning holds to get a contradiction for if a1 ≻ a′1.

Hence, h is strategy-proof. In a similar manner, g can be shown to be unanimous and

strategy-proof. From Fact 1, we know that g, h are therefore min-max rules. Hence we have that

∀(x1, . . . , xn) ∈ An, f (RN) = {g(RN)} ∪ {h(RN)} for min-max rules g, h. This completes the

proof of the only-if part of the theorem. ■

3.2 PROOF OF THEOREM 2

Proof of the “if” part: We show that any UAM rule is tops-only, unanimous, and strategy-

proof on SU . Let g, h be two adjacent min-max rules and f the UAM rule such that f (RN) =

g(RN) ∪ h(RN) for all RN ∈ Sn
U . Since min-max rules are tops-only and unanimous, f is also

tops-only and unanimous. We show that f is strategy-proof. Recall the set I = {S ⊆ A :

S is an interval and |S| ≤ 2} and the ordering ◁ defined in Remark 3. We first prove a claim.

Claim 1. f (RN) ∈ I for all RN ∈ Sn
U .

Proof of Claim 1: Recall that by our assumption f (RN) = g(RN) ∪ h(RN) for all RN ∈ Sn
U

where g, h are two adjacent min-max rules. As f , g, and h are tops-only functions where the tops

are elements of A, we write them as functions from An to A. Assume for contradiction there

exists (a1, . . . , an) ∈ An, such that f (a1, . . . , an) /∈ I . Let x, y ∈ f (a1, . . . , an) with x ≺ y − 1.

WLOG we may assume that a1, . . . , aj−1 ⪯ x and aj, . . . , an ≻ x for some j ≤ n. Also, as f (a1, . . . ,

an) = g(a1, . . . , an) ∪ h(a1, . . . , an), we may assume that g(a1, . . . , an) = x and h(a1, . . . , an) = y.

Consider the profile ccc = (c1, . . . , c1︸ ︷︷ ︸
j−1

, cm, . . . , cm︸ ︷︷ ︸
n−j+1

), that is obtained by moving x1, . . . , xj−1 to c1 and

moving xj, . . . , xn to cm.

Since g and h are min-max rules, we must have g(ccc) ≺ x and h(ccc) ≻ y. This means β
g
S ≺ x
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and βh
S ≻ y where S = {1, . . . , j − 1}. But this contradicts the fact that g and h are adjacent

min-max rules. □

We now proceed to prove that f is strategy-proof. Since f is tops-only, we recast f as

a function f : An → A. Note that if an agent j has a preference ordering Rj ∈ SU , their

preferences over elements of I must be single-peaked with respect to the ordering ◁, with the

same peak τ(Rj). Consider a profile (a1, . . . , an) ∈ An, an agent i ∈ N, and a peak a′i ∈ A. We

show that f is not manipulable by agent i at (a1, . . . , an) via a′i. WLOG assume that a′i ≻ ai.

Case 1: f (a1, . . . , an) ◁ ai

Since f (a1, . . . , an) ◁ ai ◁ a′i, we have g(a1, . . . , an) ⪯ ai ⪯ a′i and h(a1, . . . , an) ⪯ ai ⪯ a′i.

Thus, the outcome of g and h do not change from (a1, . . . , ai, . . . , an) to (a1, . . . , a′i, . . . , an) and

so neither does the outcome of f . Hence, the agent i cannot manipulate f .

Case 2: f (a1, . . . , an) = ai.

Since i already has the best possible outcome according to Ri, i cannot manipulate f .

Case 3: f (a1, . . . , an) ▷ ai.

Note that by the definition of f , f (a1, . . . , a′i, . . . , an) ∈ I . Further, as a′i ≻ ai and g and h are

min-max rules, it follows that g(a1, . . . , a′i, . . . , an) ⪰ g(a1, . . . , ai, . . . , an) and h(a1, . . . , a′i, . . . ,

an) ⪰ h(a1, . . . , ai, . . . , an). Combining the two observations with the assumption of the case,

we have f (a1, . . . , a′i, . . . , an) ▷ f (a1, . . . , ai, . . . , an) ▷ ai. However, as for any R ∈ SU , R|I is

single-peaked with the peak at τ(Ri), we have for any preference of agent i with ai at the peak,

f (a1, . . . , ai, . . . , an) is preferred over f (a1, . . . , a′i, . . . , an). Hence, agent i cannot manipulate f .

As the Cases 1, 2, and 3 are exhaustive, we have f is strategy-proof. This completes the proof

of the if part. ■

Proof of the “only-if” part: Let f : Sn
U → A be a tops-only, unanimous, and strategy-proof

SCC. We will show that f is a UAM rule, that is, there exist two adjacent min-max rules g and

h such that f (RN) = g(RN) ∪ h(RN) for all RN ∈ Sn
U . Recall from Remark 1 that SE ⊆ SU .

Consider the restriction of f to Sn
E , and let’s denote it by f ′. Since SE ⊆ SU , f ′ is tops-only,

unanimous, and strategy-proof on SE. Thus, by Theorem 1, f ′ is a UM rule, and by the definition

of a UM rule there exist two min-max rules g and h such that f ′(RN) = g(RN) ∪ h(RN) for all

RN ∈ Sn
E . Since f is tops-only, this means f (RN) = g(RN) ∪ h(RN) for all RN ∈ Sn

U . We prove

the theorem by showing that g and h are two adjacent min-max rules, i.e.,
∣∣[β

g
S, βh

S
]∣∣ ≤ 2 for all

S ⊆ N. In the following, we show a crucial property of f .

Lemma 3. For all RN ∈ Sn
U , f (RN) ∈ I .
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Proof. Since f is tops-only, we can recast it as a function f : An → A. Assume for contradiction

that there exist (x1, . . . , xn) ∈ An and b ∈ A such that b /∈ [min f (x1, . . . , xn), max f (x1, . . . , xn)].

Let us write a = min f (x1, . . . , xn) and c = max f (x1, . . . , xn). Also, without loss of generality,

we may assume that x1, . . . , xi−1 ≺ c and xi, . . . , xn ⪰ c for some i ≤ n.

Consider the outcome f (x1, . . . , xi−1, c, . . . , c). As f is uncompromising and xi, . . . , xn ⪰ c,

for any x ≺ c,

x ∈ f (x1, . . . , xn) ⇐⇒ x ∈ f (x1, . . . , xi−1, c, . . . , c).

Moreover, as c ∈ f (x1, . . . , xn) and xi, . . . , xn ⪰ c, by uncompromisingness of f and Propo-

sition 2, c ∈ f (x1, . . . , xi−1, c, . . . , c). Finally, for any x ≻ c, as x /∈ f (x1, . . . , xn), by uncom-

promisingness of f , x /∈ f (x1, . . . , xi−1, c, . . . , c). Combining all the observations, we have

f (x1, . . . , xn) = f (x1, . . . , xi−1, c, . . . , c). Define:

Yi−1 := f (x1, . . . , xi−1, c, c, c, . . . , c) = f (x1, . . . , xn)

Yi := f (x1, . . . , xi−1, b, c, c, . . . , c)

Yi+1 := f (x1, . . . , xi−1, b, b, c, . . . , c)

...

Yn := f (x1, . . . , xi−1, b, b, b, . . . , b)

We make the following observations. First, for any k ≥ i, max Yk ⪰ b. To see this, suppose l ≥ i

is the first index such that max Yl ≺ b. Then, by uncompromisingness of f , max Yl−1 ≺ b. If

l = i then this contradicts that max Yi−1 = c ≻ b, otherwise this contradicts the fact that l is the

first index with max Yl ≺ b. Hence, for any k ≥ i, max Yk ⪰ b. Second, max Yn = b, otherwise,

if max Yn ≻ b, by moving x1, . . . , xi−1, one by one, to b and applying uncompromisingness of f ,

we would get max f (b, . . . , b) ≻ b, contradicting unanimity of f ; hence max Yn = b. Therefore,

there exists j ≥ i such that max Yj = b and max Yj−1 ≻ b. Without loss of generality, we

may assume that j is first index with such property. Moreover, as a ∈ Yj−1 and max Yj−1 ≻ b,

|Yj−1| ≤ 2 implies b /∈ Yj−1.

Let Rj be a preference with peak at b and Yj−1PjYj (see (v) of Lemma 5 in Appendix 5.2). Note

that such a preference exists as b /∈ Yj−1 and max Yj = b ≺ max Yj−1. Then j can manipulate at

(x1, . . . , xi−1, b, . . . , b︸ ︷︷ ︸
j−i+1

, c, . . . , c) via c. This contradicts the fact that f is strategy-proof. ■

We now complete the proof of the only-if part. Note that as f (RN) = g(RN) ∪ h(RN) for all

RN ∈ Sn
U and f (RN) is an interval for all RN ∈ Sn

U (Lemma 3), we have |[g(RN), h(RN)]| ≤ 2 for
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all RN ∈ Sn
U . Consider S ⊆ N and a preference profile R̄N in Sn

U where τ(R̄i) = c1 for all i ∈ S

and τ(R̄i) = cm for all i ∈ N \ S. Note that by the definition of a min-max rule, g(R̄N) = β
g
S and

h(R̄N) = βh
S. Therefore, |[g(R̄N), h(R̄N)]| ≤ 2 implies

∣∣[β
g
S, βh

S
]∣∣ ≤ 2. This completes the proof

of the only-if part. ■

4. FURTHER DISCUSSIONS

4.1 AN ALTERNATIVE CHARACTERIZATION OF SCCS OVER SU

As discussed in Section 1, Rodrı́guez-Álvarez (2017) works with a similar framework as ours.

The author assumes single-peaked preferences on I with respect to the ordering ◁.4 Rodrı́guez-

Álvarez (2017) proves that the set of unanimous and strategy-proof SCCs on SI is exactly the

set of all extended median voter schemes (EMVSs) (see Theorem 3 in Rodrı́guez-Álvarez (2017)).

Hereafter, we provide a formal definition of an EMVS.

Definition 11. An SCC f : Dn → A is an extended median voter scheme (EMVS) if there exists

{aS}S⊆N with aS ∈ I for every S ⊆ N satisfying the following two conditions

(i) a∅ = cm, aN = c1, and

(ii) aS ⊴ aT for all T ⊆ S,

such that for all RN ∈ SI ,

f (RN) = minS⊆N{maxi∈S{τ(Ri), aS}},

where min and max are the minimum and the maximum taken w.r.t. ◁, respectively.5

Note that by Lemma 3, a tops-only, unanimous, and strategy-proof SCC on SU selects an

element of I . Also, Theorem 1 in Rodrı́guez-Álvarez (2017) shows that any unanimous and

strategy-proof SCC on SI is tops-only. These two together with the fact that for any preference

R ∈ SU ∪ SI , τ(R) ∈ A1 imply the following Corollary.

Corollary 1. An SCC f : Sn
U → A is tops-only, unanimous, and strategy-proof if and only if there

exists a unanimous and strategy-proof SCC g : Sn
I → I such that f (RN) = g(R′

N) for all RN ∈ Sn
U

and all R′
N ∈ Sn

I with τ(Ri) = τ(R′
i) for all i ∈ N.

4Rodrı́guez-Álvarez (2017) defines the preferences in a different manner, however, the preferences are single-
peaked as defined here (see Lemma 1 in Rodrı́guez-Álvarez (2017)).

5Note that EMVS is well-defined on any domain D where τ(R) ∈ I for all R ∈ D. Therefore, it is well defined
for all the domains we are considering in this paper.
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In view of Corollary 1, Theorem 3 of Rodrı́guez-Álvarez (2017) and Theorem 2 of our paper

together imply that any UAM rule is an EMVS and vice versa. Therefore, we have the following

alternative characterization of tops-only, unanimous, and strategy-proof SCCs on SU .

Theorem 3. An SCC f : Sn
U → A is tops-only, unanimous, and strategy-proof if and only if it is an

EMVS.

As the definitions of UAM rules and EMVS are structurally different, below we show directly

that they are indeed equivalent.

Lemma 4. An SCC is a UAM rule if and only if it is an EMVS.

Proof of the only-if part: Let f : Dn → A be a UAM rule. We show that f is an EMVS. By

definition, f (RN) = g(RN) ∪ h(RN) for two adjacent min-max rules g and h. Let g have

parameters denoted by β
g
S and h have parameters denoted by βh

S. Since g and h are adjacent,

we have
∣∣[β

g
S, βh

S
]∣∣ ≤ 2 for all S ⊆ N; in particular, this implies that β

g
S ∪ βh

S ∈ I for all S ⊆ N.

Define aS = β
g
S ∪ βh

S for all S ⊆ N. As {β
g
S}S⊆N and {βh

S}S⊆N are parameters of two min-max

rules, it follows that a∅ = cm, aN = c1, and aS ≤ aT for all T ⊆ S. Thus, {aS}S⊆N satisfies all the

conditions of the parameters of an EMVS. Additionally, for any set S ⊆ N, as |[βg
S, βh

S]| ≤ 2, we

must have either

max
i∈S

{τ(Ri), β
g
S} = max

i∈S
{τ(Ri), βh

S} = max
i∈S

{τ(Ri), aS} (1)

or

β
g
S = max

i∈S
{τ(Ri), β

g
S} ̸= max

i∈S
{τ(Ri), βh

S} = βh
S, and max

i∈S
{τ(Ri), aS} = aS. (2)

Consider the EMVS f generated by the parameters {aS}S⊆N . We prove that f is an EMVS

by showing that f and f are identical. Let RN ∈ Dn. We first prove a claim showing that

f (RN) ⊵ f (RN).

Claim 2. f (RN) ⊵ f (RN).

Proof of Claim 2: Assume for contradiction f (RN) ⊴ f (RN) and let V = arg minS⊆N{maxi∈S{τ(Ri),

aS}}. As either maxi∈V{τ(Ri), aV} ⊵ maxi∈V{τ(Ri), β
g
V} or maxi∈V{τ(Ri), aV} ⊵ maxi∈V{τ(Ri),

βh
V}, it must be that either f (RN) ⊵ g(RN) or f (RN) ⊵ h(RN), a contradiction to f (RN) ◁

f (RN). Thus, f (RN) ⊵ f (RN). □

We now distinguish two cases based on the values of g(RN) and h(RN).
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Case 1: g(RN) ̸= h(RN).

Without loss of generality we may assume that g(RN) ≺ h(RN), while noting that |[g(RN),

h(RN)]| ≤ 2. Let T = arg minS⊆N{maxi∈S{τ(Ri), β
g
S}}. Since h(RN) ≻ g(RN), it follows

that maxi∈T{τ(Ri), β
g
T} ≺ maxi∈T{τ(Ri), βh

T}. This, together with |[βg
T, βh

T]| ≤ 2, implies

h(RN) = maxi∈T{τ(Ri), βh
T}. Hence, for T, (2) holds, implying

βh
T = max

i∈T
{τ(Ri), βh

T} ▷ max
i∈T

{τ(Ri), aT} = aT ▷ max
i∈T

{τ(Ri), β
g
T} = β

g
T.

As f (RN) ⊵ f (RN) (by Claim 2), thus, we have f (RN) = maxi∈T{τ(Ri), aT} = aT = β
g
T ∪ βh

T =

f (RN).

Case 2: g(RN) = h(RN).

Let Tg = arg minS⊆N{maxi∈S{τ(Ri), β
g
S}} and Th = arg minS⊆N{maxi∈S{τ(Ri), βh

S}}. Suppose

for Tg, (1) holds. Then, we have g(RN) = maxi∈Tg{τ(Ri), β
g
Tg
} = maxi∈Tg{τ(Ri), βh

Tg
} =

maxi∈Tg{τ(Ri), aTg} implying f (RN) ⊵ f (RN). This, together with f (RN) ⊵ f (RN), implies

f (RN) = f (RN). Similar arguments apply if (1) holds for Th. Thus, assume that (2) holds for

both Tg and Th. Therefore, by the assumption of the Case, we have

β
g
Tg

= max
i∈Tg

{τ(Ri), β
g
Tg
} = max

i∈Th
{τ(Ri), βh

Th
} = βh

Th
. (3)

Recall that by the definition of the β parameters of g and h, we have β
g
Tg

⪰ β
g
Tg∪Th

and

βh
Th

⪰ βh
Tg∪Th

. This, together with aTg∪Th = β
g
Tg∪Th

∪ βh
Tg∪Th

and (3), implies β
g
Tg

= βh
Th

⊵ aTg∪Th .

Also, as maxi∈Tg{τ(Ri), β
g
Tg
} = β

g
Tg

(by (3)), it must be that maxi∈Tg{τ(Ri)} ⪯ β
g
Tg

. Simi-

larly, maxi∈Th{τ(Ri)} ⪯ βh
Th

. Combining the above observations, we have maxi∈Tg∪Th{τ(Ri),

aTg∪Th} ⊴ β
g
Tg

= βh
Th

. Hence, f (RN) ⊴ f (RN) and by Claim 2, f (RN) = f (RN).

Since the two cases are exhaustive, this completes the proof that f is an EMVS. ■

Proof of the if part: Take an EMVS f with parameters {aS}S⊆N . Define β
g
S = min aS and

βh
S = max aS for all S ⊆ N. This means β

g
S, βh

S ∈ A for all S ⊆ N. Moreover, as a∅ = cm and

aN = c1, we have β
g
∅ = βh

∅ = cm and β
g
N = βh

N = c1. Further, β
g
S = min aS ⊴ min aT = β

g
T

implies β
g
S ⪯ β

g
T for all T ⊆ S. Similarly, we have βh

S ⪯ βh
T for all T ⊆ S. Thus, {β

g
S}S⊆N and

{βh
S}S⊆N satisfy all the conditions of the parameters of a min-max rule. Let g be the min-max

rule with parameters {β
g
S}S⊆N and h the min-max rule with parameters {βh

S}S⊆N . Also, as

aS ∈ I for all S ⊆ N, we have |[βg
S, βh

S]| ≤ 2 for all S ⊆ N, i.e., g and h are adjacent. Define a

UAM rule f : Dn → A as f (RN) = g(RN) ∪ h(RN) for all RN ∈ Dn. We claim that f and f are
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identical. Since aS = β
g
S ∪ βh

S for all S ⊆ N, it follows from the only-if part of this lemma that f

and f are identical. Hence, every EMVS f is also a UAM rule. ■

4.2 UNANIMOUS AND STRATEGY-PROOF SCCS ON S

It is worth mentioning that, on both SU and SE domains, there are unanimous and strategy-

proof SCCs that are not tops-only. Below we present an example of such an SCC. We think

characterizing unanimous and strategy-proof SCC on both SU and SE is an interesting open

problem that we leave for future research.

Example 4. Let N = {1, 2} and A = {a, b, c} with a ≺ b ≺ c. Consider the following SCC f on

S2.

f (R1, R2) =



b if b ∈ {τ(R1), τ(R2)},

a if τ(Ri) = a for all i ∈ {1, 2},

c if τ(Ri) = c for all i ∈ {1, 2},

b if {τ(R1), τ(R2)} = {a, c} and bPi{a, b, c} for some i ∈ {1, 2}, and

{a, b, c} if {τ(R1), τ(R2)} = {a, c} and {a, b, c}Rib for all i ∈ {1, 2}.

It is straightforward to see that f is unanimous and non-tops-only. To see that f is strategy-

proof, consider a profile (R1, R2). If τ(R1) = b, manipulation cannot happen: 1 gets their best

possible outcome from reporting sincerely and 2 cannot change this outcome in any manner.

The scenario is similar if τ(R2) = b. So we consider the only remaining case, where (WLOG,

due to symmetry of f ) τ(R1) = a and τ(R2) = c. If bP1{a, b, c}, then the outcome is b, and agent

1 can only change the outcome (possibly) to {a, b, c} or c. But by our assumption bP1{a, b, c}

and as her top is a, she prefers b over c (single-peakedness over the elements of A1). So, agent 1

cannot manipulate. If {a, b, c}R1b then, if bP2{a, b, c} the outcome is b, otherwise it is {a, b, c}.

If the outcome is b then agent 1 can change it only to c and that she does not prefer over b

(single-peakedness over the elements of A1). Finally, if the outcome is {a, b, c} then she can

change it to b or c. But as she prefers {a, b, c} over b, she can not manipulate in this situation. A

similar reasoning also holds for 2. This shows that f is strategy-proof. □
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5. APPENDIX

5.1 PROOF OF FACT 1

We provide a proof for Fact 1, assuming the Theorem (Moulin (1980), Weymark (2011)):

Proof. We introduce some terminologies to ease the presentation of the proof. For Q ∈ S|A1 , we

use the notation R to denote an “extension” of Q to a preference in S , that is, R ∈ S is such that

if we restrict R to the alternatives in A1, we obtain Q, more formally, R|A1 = Q. Similarly, for

R ∈ S , by Q we denote the restriction of R to the alternatives in A1. Moreover, RN |A1 = QN .

Let f : Sn → A be a unanimous, strategy-proof, and tops-only SCF. Define an SCF g :

(S|A1)
n → A given by g(QN) = f (RN) for all QN ∈ (S|A1)

n. Since τ(Q) = τ(R) for all Q ∈ S

and f is tops-only, g is well-defined and tops-only. Further, as f is unanimous and strategy-

proof, g must also be unanimous and strategy-proof. Therefore, by the Theorem (Moulin (1980),

Weymark (2011)), g is a min-max rule. So, for every S ⊆ N, there exists β
g
S ∈ A with β

g
∅ = cm,

β
g
N = c1, and β

g
T ⪯ β

g
S for S ⊆ T such that for all QN ∈ (S|A1)

n,

g(QN) = min
S⊆N

[max
i∈S

{τ(Qi), β
g
S}].

But g(QN) = f (RN) and τ(Qi) = τ(Ri). Hence for all RN ∈ Sn,

f (RN) = min
S⊆N

[max
i∈S

{τ(Ri), β
g
S}].

So, f : Sn → A is a min-max rule.

For the converse, let f : Sn → A be a min-max rule. Thus, f is unanimous and tops-only by

definition. We show that f is strategy-proof as well. Define a function g : (S|A1)
n → A given by

g(QN) = f (RN). Note that g is well-defined as τ(Q) = τ(R) for all Q ∈ S|A1 and f is tops-only.

Since f is a min-max rule, for every S ⊆ N there exists β
f
S ∈ A with β

f
∅ = cm, β

f
N = c1, and

β
f
T ⪯ β

f
S for S ⊆ T such that for all RN ∈ Sn

f (RN) = min
S⊆N

[max
i∈S

{τ(Ri), β
f
S}].

But g(QN) = f (RN) and τ(Qi) = τ(Ri). Hence for all QN ∈ (S|A1)
n,

g(QN) = min
S⊆N

[max
i∈S

{τ(Qi), β
f
S}].
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So, g is a min-max rule. From the Theorem (Moulin (1980), Weymark (2011)), g is strategy-proof.

If the strategy-proofness of f were contradicted at some profile, the strategy-proofness of g

would be contradicted at the corresponding restricted profile, so f must be strategy-proof. ■

5.2 AN IMPORTANT LEMMA

The following lemma guarantees the existence of different preferences considered in the proofs.

Lemma 5. The following existence statements are true:

(i) For all x, xi ∈ A with x ≺ xi, there exists R1 ∈ SE such that τ(R1) = xi and for all X, Y ⊆ A,

YP1X whenever [c1, x] ∩ Y = ∅ and [c1, x] ∩ X ̸= ∅.

(ii) For any S ⊆ A with |S| > 2, if s1 = min S and s2 = max S,

(a) there exists R2 ∈ SE such that τ(R2) = s1 + 1 and SP2{s1},

(b) there exists R3 ∈ SE such that τ(R3) = s2 and {s1 + 1}P3S, and

(c) there exists R4 ∈ SE such that τ(R4) = s1 + 1 and SP4{s1, s1 + 1}.

(iii) For any x, ai ∈ A and z ∈ {ai, ai + 1}, such that x ≻ ai, there exists R5 ∈ SE such that

τ(R5) = z and for all X, Y ⊆ A, XP5Y whenever [x, cm] ∩ X = ∅ and [x, cm] ∩ Y ̸= ∅.

(iv) For any y, x, ai ∈ A and z ∈ {ai, ai + 1}, such that y ≻ x ≻ ai, there exists R6 ∈ SE such that

τ(R6) = z and for all X, Y ⊆ A, XP6Y whenever [c1, x] ∩ X ̸= ∅ and [c1, x] ∩ Y = ∅.

(v) For any b ∈ A, Yj, Yj−1 ⊆ A such that b = max Yj ≺ max Yj−1 and b /∈ Yj−1, there exists

R7 ∈ SU such that for all k, l ∈ A with k ≺ b ≺ l, bP7lP7k, and Yj−1P7Yj.

Proof. Below we prove the above statements one by one. We use the following terminology in

the proof. For a preference Rj ∈ S , we denote vj and λj for a corresponding utility function and

a corresponding assessment, respectively.

(i) Let R1 be such that v1(y) < −100 · |A| for y ⪯ x, and it takes values between 0 and

1 for y ≻ x, peaking at xi, where xi ≻ x by assumption. This can be done by setting

v1(x + 1) = 0, v1(xi) = 1, v1(cm) = 0.1, and interpolating for all candidates in between.

Now, for any X such that [c1, x] ∩ X ̸= ∅, vE
1 (X) < −99 · |A|. For any Y such that

[c1, x] ∩ Y = ∅, vE
1 (Y) ≥ 0. Hence, YP1X.

(ii) (a) Consider R2 such that v2(s1) = 0.1. Set v2(x) > 10 for all x ≻ s1 such that v2 attains

its maximum at s1 + 1, for example by setting v2(s1 + 1) = 12, v2(cm) = 11, and

interpolating for all candidates between s1 + 1 and cm. Then clearly vE
2 (S) > vE

2 ({s1}).
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(b) Consider R3 such that v3(s1) = −100 · |A| − 1. Set 0 ≤ v2(x) ≤ 1 for all x ≻ s1 such

that v3 attains its maximum at s2, for example by setting v3(s1 + 1) = 0, v3(s2) = 1,

and interpolating for all candidates in between. Then vE
3 (S) < −99 · |A| < 0 ≤

vE
3 ({s1 + 1}).

(c) Consider R4 such that v4(s1) = 0, 10 < v4(x) < 13 for all x ≻ s1 such that v4 peaks at

s1 + 1, by setting v4(s1 + 1) = 12, v4(cm) = 11, and interpolating for all candidates

in between s1 + 1 and cm. Then vE
4 ({s1, s1 + 1}) = 6 < 20

3 ≤ vE
4 (S), with the last

inequality following from the fact that vE
4 (S) is the average of 0 and at least 2 other

real numbers, each of which is greater than 10.

The other functions can also be constructed with similar techniques, so a sketch of the idea

is given in place of the explicit construction:

(iii) Consider R5 such that v5(a) < −100 · |A| for all a ⪰ x and v5(a) > 0 for all a ≺ x; such

that v5(ai) or v5(ai + 1) is the peak as required.

(iv) Consider R6 such that v6(a) > 100 · |A| for all a ≺ x + 1 and v6(a) < 0 for all a ⪰ x + 1;

such that v6(ai) or v6(ai + 1) is the peak as required.

(v) Consider R7 such that v7(b) = 100, v7(l) > 99 for all l ≻ b, 0 < v7(k) < 0.1 for all k ≺ b,

and λ6(l) > 100 · |A| · λ6(k) > 10000 · |A| · λ6(b) for all k, l such that k ≺ b ≺ l.

This completes the proof of the lemma. ■

5.3 PROOF OF LEMMA 2

Proof. Since f is tops-only, we can recast it as a function f : An → A. We first prove the result

for two voters. Assume for contradiction the lemma does not hold, that is, there exist x1, x2 ∈ A

such that | f (x1, x2)| > 2. WLOG assume that x1 ≺ x2. Define S := f (x1, x2), s1 := min S, and

s2 := max S. From strategy-proofness of f , f (x1, x2) = S = f (s1, s2). We look at f (s1, s1 + 1).

Since |S| > 2, s1 + 1 ̸= s2. By Proposition 1, f (s1, s1 + 1) = {{s1}, {s1 + 1}, {s1, s1 + 1}}. First

assume that f (s1, s1 + 1) = {s1}. If agent 1 votes for s1, consider the case where agent 2 has

a preference R1 such that τ(R1) = s1 + 1 and SP1{s1} (see (ii)-(a) of Lemma 5 in Appendix

5.2). Agent 2 can manipulate by voting for s2, giving rise to a contradiction. Now assume

f (s1, s1 + 1) = {s1 + 1}. If agent 1 votes for s1, consider the case where agent 2 has a preference

R2 such that τ(R2) = s2 and {s1 + 1}P2S (see (ii)-(b) of Lemma 5 in Appendix 5.2). Agent 2

can manipulate by voting for s1 + 1, giving rise to a contradiction. Finally, assume that f (s1,

s1 + 1) = {s1, s1 + 1}. If agent 1 votes for s1, consider the case where agent 2 has a preference
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R3 such that τ(R3) = s1 + 1 and SP3{s1, s1 + 1} (see (ii)-(c) of Lemma 5 in Appendix 5.2). Agent

2 can manipulate by voting for s2, giving rise to a contradiction. Thus, we have shown that the

lemma holds for n = 2. Next, we introduce an induction hypothesis.

Induction Hypothesis: Given n ≥ 3, all tops-only, unanimous, and strategy-proof SCC g :

Sn−1
E → A has sets of size at most 2 in the range.

We show that all tops-only, unanimous, and strategy-proof SCC f : Sn
E → A has the same

property. Consider an SCC f : Sn
E → A that is tops-only, unanimous, and strategy-proof. As f

are tops-only, we rewrite f as a function with domain An. Define a tops-only SCC g on Sn−1
E in

the following way:

g(x1, x3, . . . , xn) = f (x1, x1, x3 . . . , xn) for all (x1, x3, . . . , xn) ∈ An−1.

Note that g is a tops-only SCC with voters 1, 3, . . . , n. Further, as f is unanimous, g is also

unanimous. We show that g is strategy-proof. Clearly individuals 3, . . . , n cannot manipulate g,

as otherwise they would be able to manipulate f . Suppose then 1 could manipulate g. Then we

have:

J := f (a1, a1, a3, . . . , an) = g(a1, a3, . . . , an)

K := f (b1, a1, a3, . . . , an)

L := f (b1, b1, a3, . . . , an) = g(b1, a3, . . . , an)

and a preference ordering R1 for voter 1 with τ(R1) = b1 such that JP1L (in particular,

{b1}P1{a1}). We look at f when voters 1 and 2 have the same ordering R1. Since agent 1

cannot manipulate f , KR1 J. Similarly, as agent 2 cannot manipulate f , LR1K. Combining the

two observations, we have LR1 J, a contradiction to JP1L. Thus, g is strategy-proof.6 Hence, by

the induction hypothesis, the range of g has sets of size at most 2.

Now we show that the range of f has sets of size at most 2. Suppose the contrary; let

f (a1, . . . , an) have size more than 2. If any two of a1, . . . , an are identical — WLOG say a1 = a2 —

then we define g(x1, x3, . . . , xn) = f (x1, x1, x3, . . . , xn). As g is unanimous and strategy-proof as

seen above, by the induction hypothesis, |g(a1, a3, . . . , an)| ≤ 2. Thus, | f (a1, a1, a3, . . . , an)| ≤ 2.

So, assume that no two of a1, . . . , an are identical. WLOG let a1 ≺ a2 ≺ . . . ≺ an. Let S = f (a1,

a2, a3, . . . , an) and T = f (a2, a2, a3, . . . , an). Note that |T| ≤ 2. If S ∩ [a1, a2 − 1] = ∅, then 1

can manipulate by choosing their preferred outcome among f (a1, . . . , an) and f (a2, a2, a3, . . . ,
6We have included the proof of strategy-proofness of g for completeness. It can also be found in Sen (2001).
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an) regardless of whether they prefer a1 or a2, breaking strategy-proofness. So there exists

x ∈ S ∩ [a1, a2 − 1]. Similarly there exists y ∈ S ∩ [an−1 + 1, an]. Let y be the maximum such

candidate. We note that max S = max T, since otherwise, if max S ≻ max T, 1 can manipulate

at (a1, a2, . . . , an) by voting a2 when they have a utility function that goes arbitrarily low for

all candidates a with a ⪰ max S (and similarly if max T ≻ max S, 1 can manipulate at (a2,

a2, . . . , an)). Now, let 1 have a utility vi that peaks at a2 such that vi(a2) − vi(c) < 0.01 for

all candidates c ≺ y, and vi(a2)− vi(d) > 100 for all candidates d such that d ⪰ y. Then 1

can manipulate at (a2, a2, a3, . . . , an) by voting a1, since the outcome set S would have a larger

number of candidates with high utility than the outcome set T, and hence would be preferred

by 1. ■
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